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Abstract. The dimensionalisation hypothesis given in a previous paper is modified and 
established in a way which is as independent of arbitrary choices as possible. The process 
of group contraction is also analysed as well as the relation between dimensions in the 
original and contracted group. The theory is illustrated with the example of Cayley-Klein 
geometries and an ultrarelativistic limit of the PoincarC group. 

1. Introduction 

A few years ago we proposed a group theoretical support for dimensional analysis in 
the context of kinematic groups (Carifiena et a1 1981). The main idea was to trace 
back to the kinematic group structure the ‘dimensional analysis’ (DA) for the world 
described by that group. Although the description of spacetime as an homogeneous 
space of a kinematic group is known to be only approximate (for classical gravitation, 
a general Semi-Riemannian 4-manifold against the flat Minkowski space), the results 
of such a study will hopefully retain their significance in the general case as we have 
a Poincark group of isometries in each tangent space. It could also be useful for other 
theories (such as gauge theories) involving other groups. 

The meaning of the results obtained in our previous paper by means of the 
‘dimensionalisation hypothesis’ needs no further emphasising. There we started not 
with an abstract Lie algebra with some generators Ai, but instead, each Ai had a very 
concrete physical meaning (i.e. a generator of space translations along a line, of pure 
inertial transformations, etc). However a drawback to this treatment was pointed out 
in the previously quoted paper: ‘not every element of the algebra has a dimension (e.g. 
H + P1 has not)’ (Carifiena et aI 1981, p 7). This is very unsatisfactory because H+ P,  
is as worthy a Lie algebra element as H or P I ,  and in fact, in the Galilei group, the 
subgroup generated by H + P1 is conjugated to the subgroup generated by H because 
we have (in the Galilei group) 

exp( u K , )  exp H exp( - O K , )  = exp( H + UP,). 
On the basis of this formula we could argue that, as H and PI have different 

dimensions, H and PI need a relative dimensional coefficient to be added. In fact, as 
U has dimension LT-’, each each element in H +  UP, has, according to the standard 
values of DA, a dimension of T-’, a result which is in agreement with the physical 
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meaning of H + UP, as generating time translations relative to a reference system which 
is moving with a speed -U along the 1-axis from our original reference system. 

The drawback of this procedure appears more evident when we realise that this 
kind of reasoning has to be made after the dimensionalisation hypothesis has been 
used for giving dimension to some Lie algebra elements, i.e. the elements of the chosen 
‘physical’ basis. If the process is repeated starting from some other basis, nothing 
assures us that the results will remain unchanged. In fact, simple examples show that 
the results do indeed change. Take as an example the 1 + 1 PoincarC group, which in 
the physical basis H, P, K is 

[ K ,  H I =  P [K,Pl=H [ H ,  P]=O 

and refer it to a ‘light-cone basis’ {P+ ,  P- ,  K }  where 

P+ = i ( H +  P )  P - = H - P  

with Lie brackets 

[ K ,  p+1= p+ [ K, P-]  = - P- [ P,, P-] = 0. 

If we apply the dimensionalisation hypothesis naively we obtain [ K ]  = 1 and [P,] ,  
[ E ] ,  two independent dimensions. Whether this has some meaning or not, this result 
clearly conflicts with the results obtained in an ordinary way, i.e. P and H have the 
same dimension (which could naively be expected to be that of P+ and P - ) ,  because 
if we had started with the light-cone basis, we had to find an argument showing that 
H = P+ + i P -  and P = P+ -5P- have the same dimension. 

Another simple example is provided by the two-dimensional Euclidean group, 
referred to the bases A = J, B = J + P, ,  C = .I + P2. Here the naive application of the 
DA meets more difficulties, because the commutator of two basis elements is not a 
simple basis element, e.g. [A ,  B ]  = C - A .  If one insists in assigning dimensions to 
A, B, C in such a way that all non-zero structure constants are dimensionless, this 
would lead to A, B, C dimensionless. This is of course both reasonable and adequate, 
as A, B, C generate rotations around different points, but the drawback is now that 
there is no trace of the presence in the group of generators as B - A  or C - A which 
are not dimensionless in the standard treatments. 

After mentioning some of the difficulties appearing in the theory proposed in the 
earlier paper depending on the initial choice of the basis, the benefits are clear for 
examining again more carefully its ‘dimensionalisation hypothesis’, looking for a 
method of establishing it in a way as independent of arbitrary choices as possible and 
trying to find an explanation for the success of the hypothesis with the particular 
choices given in the paper. This is one of the motivations for the present paper, but 
we do not restrict ourselves to the study of kinematic groups as in the earlier paper 
but we also consider another classical problem, that of nine plane geometries, for 
which a summary can be found in the excellent (and amusing) book by Yaglom (1979). 
Concerning problems more directly related to physics we shall analyse an ‘ultrarelativis- 
tic contraction’ of the PoincarC group. As a by-product of the theory of dimensional 
analysis presented here, we obtain a new physical interpretation of the mathematical 
process of group contraction as well as the relation between dimensions in the original 
and contracted group, which is far more interesting when performing non-natural 
changes which go to natural changes in the limit defining the contraction. 

The scheme of this paper is as follows. In 0 2 we present a short summary of 
Cayley-Klein geometries and their groups which are going to be used later as examples 
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of the developed theory, pointing out its geometrical properties and natural relationship 
by means of different kinds of geometrical contractions, duality, etc. In the same light 
we present an unusual contraction of the 3 + 1 PoincarC group related to the ‘ultrarela- 
tivistic limit’ of relativistic mechanics. In 0 3 we present a new development of DA in 
the context of group theory, remarking on its new characteristics when compared with 
the previous one. Finally 0 4 is devoted to the discussion of some examples, ranging 
from the one-dimensional conformal geometry to the ‘ultrarelativistic’ group introduced 
in 0 2. 

2. Some Cayley-Klein geometries 

The so-called two-dimensional (or plane) Cayley-Klein geometries historically 
appeared as geometries subordinate to the projective (space)geometry in the works of 
Cayley and Klein. Furthermore, under the name quadratic, they were studied by 
PoincarC in a paper on the fundamental hypotheses of the geometry (see, for example, 
Torreti (1978, p 180) and references therein). In that work PoincarC furnished all the 
quadratic geometries with a common axiomatic foundation based on the assumption 
that the ‘plane’ (i.e. the set of ‘points’) is a two-dimensional differentiable manifold, 
whose set of motions is a three-dimensional Lie group acting on the ‘plane’. 

In modem terms, these geometries appear as G spaces for some three-dimensional 
Lie groups acting on some of their two-dimensional homogeneous spaces in the normal 
way. The geometries so obtained are locally homogeneous by construction. In the 
following we will give a brief presentation of these geometries and we do not pay 
attention to the topological (global) properties (i.e. we do not distinguish between 
spherical and elliptic geometry) and so we can work with Lie algebras in order to 
simplify some technical points. 

Consider the Lie groups S0(3), SO(2, l), E(2), A(2) and %(2), the last two standing 
for Minkowskian and Galilean in 1 + 1 dimensions, respectively. All these groups have 
a three-dimensional Lie algebra generated, say, by A, E, C with Lie brackets given by 

Table 1. 

Next, we consider for each group G a one-dimensional subgroup N and the 
corresponding two-dimensional homogeneous space G/  N which plays the role of 
‘plane’. The elements of N leave invariant the point 0 = { N } in the plane, and may 
be considered as playing the role of ‘rotations’ around 0. Now we have to single out 
(straight) lines in our geometry. This can be done by several different methods (e.g. 
by defining them as the autoparallel curves of the canonical connection (Kobayashi 
and Nomizu 1963, p 300) in G / N  which exists, provided some extra conditions hold 
here. This procedure, however, has some disadvantages in relation to Cayley-Klein 
geometries). We proceed as follows: in all the geometries we consider, to every line 
1 is associated a one-dimensional subgroup of G whose elements play the role of 
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‘translations’ along 1. Conversely, if such a subgroup 9 is designated as ‘translations 
along l’, then 1 can be considered as the trace of any of its points by means of 9. Any 
subgroup conjugated to 9 will correspond to translations along another line. So a 
‘complete’ set of lines is obtained by choosing a one-dimensional subgroup 9 which 
is taken to be the one ‘generating’ a chosen line 1 such that 0 E 1. Every two-dimensional 
Cayley-Klein geometry fits in this scheme for adequate selections of G, N and 9. 
From the Lie algebra viewpoint, the selection of N and 9 amounts to selecting the 
generators denoted by J and H. A third basis element of the Lie algebra will be called 
P ;  the transformations generated by P will be referred to as ‘special translations’ and 
they can be either ordinary translations or not (this is to be discussed separately in 
each case), in the same way as rotations can also be translations in some cases (e.g. 
in SO(3)). 

Table 2 shows how the nine plane Cayley-Klein geometries follow from this scheme. 
In each case we give the selections of J,  H and P in the Lie algebra, as well as the 
Lie brackets [J ,  H I ,  [ J ,  PI and [If, PI. For some geometries the selections are given 
in two (equivalent) forms for reasons that we shall explain later (see, for example 
FernPndez SanjuPn 1984). 

A remarkable relationship between these geometries is provided by duality, which 
interchanges ‘points’ with ‘lines’. At the level of the Lie algebra, duality is thus described 

Table 2. 

Sphericol geometry 

G z S O  3 (R) 

J:C, HzA,P=B 

J - A ,  H=-C, P z B  

to-Euclidean geometry 

G - E  12)  
J z A ,  H z - C ,  P - 8  

P 
0 
J 

~ 

:o- hyperbol I C  geometry 

G = S 0 1 2 , 1 1  

J=A , Hz-C,  P=B 

P 
H 
J 

Euclidean geometry 
G = E  12) 

J;C ~ H=A , P=0 

P 
- H  
0 

Galilean geometry 

G = s  1 2 )  

P 

J= A,H:-C, PsB 

P 
H 

Hyperbolic geometry 
G =SO f 2 , l  I 

J=C, H z A ,  P=B 

P 
- H  
- J  

J= C, H= A ,  P= B 
P 
0 

Doubly hyperbolic G 

=-B. H A ,  P:-C 

-J -J 

JA, HzB, P=-C 
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by the transformation 

J +  H H + - J  P+ P. 

This can be seen as follows: a geometrical meaning is given by choosing a one- 
dimensional subgroup, generated by J, to be interpreted as rotations around 0, i.e. 
leaving fixed a point 0, and another one-dimensional subgroup, generated by H ,  which 
will be interpreted as translations along a line, i.e. leaving invariant a line I. Now, if 
we take a different choice with the new J playing the role of the old H, we shall 
consider as the ‘point origin’ the geometric object preserved by H ,  namely the line I ;  
similar comments concern the new with respect to the old J. Finally, the choice of 
signs is just a matter of convenience. 

Duality corresponds to ‘reflection on the main diagonal’ in table 2. Some geometries 
are self-dual (e.g. for spherical geometry this corresponds to the already known polarity 
which interchanges ‘pole’ with ‘equator’), but others are not. The prefix ‘CO’ applied 
to some geometries corresponds to this fact (‘anti’ is also used by other authors (Schober 
1981)). Of course the groups of two dual geometries are isomorphic. 

What is more interesting from the physical viewpoint is the relationship between 
these geometries provided by the idea of an IW (Inonu and Wigner 1953) contraction. 
As is well known, an IW contraction of a group G is fully determined by the ‘non- 
contracted’ subgroup S .  As we have points and lines as outstanding objects of the 
geometry, we have two IW contractions with a clear geometrical meaning by taking 
either the isotopy subgroup of a point or that of a line, respectively, for S .  

In the first case we obtain a point-like, or local, contraction, given by the replacement 

P+ EP H + E H  J + J  

and then putting E + 0. In this contraction each geometry goes to its ‘middle column 
neighbour’, which near a point ‘looks’ like the original geometry. This kind of contrac- 
tion is well known and carries the spherical and hyperbolic geometries into the 
Euclidean one. 

In the second case, we obtain a different contraction, line-like or axial, given by 

P+ EP J - ,  EJ H + H  

and then E + 0. Now each geometry goes to its ‘middle row neighbour’ which ‘looks’ 
like the original geometry near a line. This kind of contraction is the one carrying the 
Minkowskian into the Galilean geometry, as its study was the starting point for IW. 

Nonetheless, its geometrical meaning is very clear but not usually stated. 
The simultaneous consideration of all these geometries related by the two kinds of 

contractions is very convenient for some purposes. It is perhaps worth noticing that 
only the upper and lower rows appear as, respectively, two-dimensional Riemannian 
and pseudo-Riemannian spaces of constant curvature, but the middle row does not 
appear in this way because the candidate for ‘metric’ is singular; this fact accounts 
for many of the peculiarities of the non-relativistic theories as opposed to the corre- 
sponding relativistic ones, both from the mathematical and the physical viewpoints. 

The hyperbolic geometry is very interesting in some of its aspects. We recall that 
the motions in this geometry can be classified into three kinds (according to the three 
conjugation classes of one-parameter subgroups in SO(2, l), depending on whether 
the motion has either only one point, or one or two points but at infinity, as fixed 
points. The corresponding motions are then called elliptic (or rotation), parabolic (or 
horocyclic displacement) and hyperbolic (or translation), respectively. In the first two 
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cases the fixed point is referred to as the centre of the motion: in the third the line 
determined by the two fixed points is called the axis of the translation. Avery convenient 
model for visualising the hyperbolic geometry is the so-called PoincarC disc conformal 
model (Pedoe 1970), in which the points at infinity are represented by the set complex 
numbers of modulus one. 

A known and very interesting property of hyperbolic geometry is that the whole 
group of motions still acts in a faithful way on the set of points at infinity (this is not 
so in the Euclidean case). This is connected with the existence of a one-dimensional 
homogeneous space for the group of hyperbolic motions, obtained by quotient by a 
two-dimensional subgroup, which is unique up to conjugations (see, for example, 
Stowe 1983). In order to see more clearly this connection, we perform a slight 
generalisation of the idea of duality. Let us consider hyperbolic geometry, and tenta- 
tively call ‘points’ in a new geometry the pencil of hyperbolic parallels, i.e. the set of 
all lines passing through a fixed point at infinity w (lines with end w according to 
Hilbert (1971)). The role of rotations will be taken for the set of transformations 
having fixed a given ‘point’ of the new geometry, i.e. by the set of hyperbolic motions 
which apply a given pencil of hyperbolic parallels onto itself. It is easy to see that the 
set contains horocyclic displacements with centre w and translations along any line in 
the pencil, and coincides with the subgroup generated by horocyclic displacements 
with centre U ,  and by translations along a given line through w. With the generators 
of hyperbolic motions as given in table 1, the point w can be taken as the point ‘at 
+CO’ on the line generated from 0 by the subgroup exp(bH), and hence horocyclic 
displacements with their centre at this point are generated by K = C - B = J - P; for 
translations along a line through the given point at infinity we choose A = H itself. 
As expected, A and K close a two-dimensional algebra, [A ,  K ] =  K ,  and the set of 
points at infinity can be represented as the corresponding homogeneous space of the 
group of hyperbolic motions. 

From the physical viewpoint, this geometry appears as being the geometry of 
light-ray ‘directions’ for light propagation in a plane, according to relativity theory, 
because free motion in a plane of massive particles correspond to ordinary points in 
the hyperbolic geometry of uniform motions (Juirez and Santander 1982) so that points 
‘at infinity’ correspond to free motions of zero mass. 

In the PoincarC disc model if w = 1 is chosen, then it is easy to obtain expressions 
for the action of motions on the points at infinity {eiP}. Here one can see another 
interesting property of this set, that this manifold is homeomorphic to a circle, and 
hence compact. 

Sometimes the so-called conformal group in one dimension is given as the group 
generated by the following transformations on the one-point compactification of the 
real line: 

t + t + b  

t + 

t 
t + -  

1 -at  

The generators of these 
by 

d T =  -- 
dt  

bER 

A E R  

ff ER. 

(2.la) 

(2.16) 

(2.lc) 

three one-parameter subgroups, say T, D and K, are given 

d K = - t2 -  
d 

D=+t- 
d t  d t  
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and close a Lie algebra 

[ D , K ] = K  

[D, T ] = - T  (2.3) 

[ T , K ] = 2 D  

which is easily recognised as a SO(2, 1 )  Lie algebra; in fact the correspondence 

D - A  T - C + B  K - C - B  

displays the standard form of the SO(2, 1 )  Lie algebra (table 2). The relations (2.1) 
define the action of the hyperbolic group SO(2, l )  acting on a one-dimensional 
homogeneous space, and hence this action must be equivariant to the one on the points 
at infinity in the hyperbolic plane; in fact, it is easy to see that the relation between 
these transformation groups, is given (if one considers the PoincarC disc model with 
points at infinity eip) by 

eip + t =tan f ~ .  
Here ‘translations’ (2.1 a )  in the variable t correspond to horocyclic displacements 

around eip = - 1 ,  generated by J + P = C + B ; ‘dilatations (2.1 b )  around t = 0’ corre- 
spond to translations along the line with ends -1  and 1 ,  generated by H, and finally 
‘special conformal transformations’ (2.1 c) correspond to the horocyclic displacements 
around eip = 1, generated by J - P = C - B. 

The correspondence t =tan i P  has an immediate geometrical meaning, as it corre- 
sponds to a stereographic projection of the circle of radius 1 in the (complex) Euclidean 
plane (which plays the role of points at infinity in the PoincarC disc model of a 
hyperbolic plane) from the point z = - 1  on the imaginary axis. Using known facts 
about inversions in the Euclidean plane it is very easy to understand, at least in 
qualitative terms, the correspondences hereafter referred to. 

It is interesting to know what the transformations of the variable t are corresponding 
to rotations around 0 and translations along the line through 0 generated by P. Very 
easy calculations give the results 

t + tan f o  t cos f o  + sin i o  
1 - t t an fo  cos t o -  t sin;@ 

t +  - - ( 2 . 4 ~ )  

and 

t + tanh fx 
1 - t tanh fx 

t cosh fx + sinh fx 
cosh fx  + t sinh ix 

- t +  - (2.46) 

respectively. The first subgroup, with generator R = -( 1 + t 2 )  d/dt, is not conjugated 
to the subgroup of dilatations around t = 0. It is perhaps noteworthy that the difference 
between ‘translations’ and special conformal transformations in the t variable is only 
nominal, because they are conjugated (e.g. by means of the transformation t +  
( t + l ) / ( l -  t ) ,  which corresponds to a rotation of angle 7~ around the origin in the 
hyperbolic plane). 

Another geometry of Cayley-Klein type which will be considered in this paper is 
an ‘ultrarelativistic’ contraction of the 3 +  1 Poincari group. As far as we know, this 
group has not been considered earlier, but its study could perhaps be useful for 
high-energy problems and also in relation to the group theoretical treatment of 
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geometrical optics (Bacry 1984). A related group (but not exactly the same) has been 
proposed for the description of the ultrarelativistic limit by Quirds and Ramirez- 
Mittelbrun (1981). 

The group % we are proposing is simply the IW contraction of the PoincarC group 
P to the neighbourhood of a light-like line (in a similar way, the Galilei group is a 
time-like line contraction of 9). We will choose the light-like line x = ( x l ,  x 2 )  = 0, x3 = t 
(the actual choice is irrelevant) and then the stability subgroup of that line is the 
subgroup generated by J3, K 3 ,  P+ and E, ( i  = 1 ,2 ) .  The notation is that of the PoincarC 
algebra in the ‘null plane’ basis as given by Leutwyler and Stern (1978): 

P + = i ( P 0 + P 3 )  E, = ~ ( E ~ J I  - K l ) .  

An adequate complement for this set for obtaining a basis of LP is P-, PI, F, 
( i = 1 , 2 ) ,  given by 

F. = - & J .  - K .  P-=Po-P,  I J 1. 

The IW contraction we are considering will be given by the replacement 

J3’J3 K3 + K3 p+-* p+ E, -* Ei 

P- -* EP- Pi + &Pi Fi -* &Fi 

and then taking the limit of E going to zero. 
The non-zero brackets of the Lie algebra LP and its contraction L% are given in 

the following, where the subindices go from 1 to 2. The symbol (0) refers to the Lie 
brackets which go to 0 in the contraction: 

[K3r Er]= Er 

The fact that the PoincarC Lie algebra contains subalgebras isomorphic to the Lie 
algebra of the extended 2 +  1 Galilei group is known (Elizalde and Gomis 1976). In 
the null-plane basis this can easily be seen: both sets {P-,  Pi, -Ei, 1, P+} and 
{P+ ,  Pi, -E ,  J, P-} generate a 2 + 1 extended Galilei algebra, with these generators being 
the time and space translations, pure inertial transformations, rotations and ‘phase’ 
subgroup. We notice that in the group % these sets even close algebras if we could 
remove P+ or P-, respectively, so that in the contracted group we obtain (as one would 
naturally expect) subalgebras isomorphic to a 2 + 1 Galilei Lie algebra. We notice that 
in the ‘ultrarelativistic’ group proposed by Quirds and Ramirez-Mittelbrun this fact 
does not occur but instead of this we would obtain a 2 +  1 Carroll Lie algebra 
(Ltvy-Lebond 1965). 
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3. Dimensional analysis 

When a group G is considered as a transformation group acting transitively on some 
space X, and so is endowed with a geometric meaning, the natural candidates to 
primitive geometrical magnitudes are just the canonical parameters of its one-parameter 
subgroups. For instance, for plane Euclidean geometry, these candidates are just the 
lengths and angles. In the general case we cannot expect, however, such a direct 
association of canonical parameters with invariant quantities for each pair of points, 
pair of lines, etc, but they will always have some meaning. Other parameters, such as 
the area, are related to more complex constructs over X and will not be considered here. 

If we take two elements g, g’ in the same one-dimensional subgroup, the value of 
the quotient of its canonical parameters is well determined; this value could then be 
taken as a ‘measure’ of the element g’ when g is considered as a ‘unit’. The choice of 
g as a ‘unit’ amounts to selecting a given element A in the Lie algebra 9 of G related 
to g by g = exp(A), i.e. g corresponds to the value of 1 of the canonical parameter. 
A change of the unit g in the given, one-dimensional subgroup is implemented by a 
change A + AA, with A # 0, of the corresponding generator and we will usually refer 
to A as the ‘unit’ for its one-parameter subgroup, Of course, for each one-dimensional 
subgroup unrelated units can be selected. But it seems to be better to: 

( a )  investigate to what extent units for some one-parameter subgroups can be 
‘propagated’ for the others, and 

( b )  realise if there are some ‘natural’ changes of the unit systems. This is the aim 
of the present research. 

Well known examples suggest to us the use of conjugation as a method for ‘propagat- 
ing’ units, because conjugate subgroups have the ‘same’ geometrical interpretation. In 
order to put this idea into formal terms, let us consider the action of G on the 
one-parameter subgroups of G by inner automorphisms. As a consequence of the 
relation g(exp X)g-’ = exp(Ad,X), two generators A and B are in the same orbit if 
there exists g E G such that Ad,A = B. We shall denote by A - B the corresponding 
equivalence relation. 

We also consider the action of G on the one-dimensional subgroups. Here, as B 
and AB, with A # 0, generate the same one-dimensional subgroup, the relevant 
equivalence relation, to be denoted by ==, is given by A = B iff there exist g E G, and 
A ER, A # 0, such that Ad,A= AB. When speaking of the equivalence class of A, 
without more specifications, we shall understand it to mean the == class. 

The idea of the propagation of units as taken from the conjugation can be translated 
as follows: ‘if A has been chosen as a unit for its one-dimensional subgroup, and 
A -  B, then select B as a unit for its subgroup’. This idea works provided that the 
one-dimensional subgroup {exp( ?A)} has no non-trivial self-conjugations, In fact, let 
us suppose X - Y,  i.e. there exists g E G such that g exp( tX)g-’ = exp( tu). If there 
exists another g’ E G such that g’ exp( tX)g’-’ = exp( tA Y ) ,  with A # 1, A E R*, then one 
should take Y and AY simultaneously as units in the same subgroup, because both 
are obtained by ‘propagation’ from X by means of a conjugation. It is trivial to show 
that in this case g-’g’ is a non-trivial self-conjugation of the one-dimensional subgroup 
exp( rX). 

The case where the one-dimensional subgroup exp( tA) has a one-parameter sub- 
group of self-conjugations can be easily identified in the Lie algebra of G. Let us 
suppose that X generates such a subgroup; as exp( p A d X ) A  = A(p)A, and A ( p l  + p2)  = 
A ( p I )  + A ( p 2 )  we obtain A ( p )  = en” with a f 0. By means of a derivation in p = 0 we 
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obtain (AdX)A = a A  = [X, A]. Then there exists an element D = a-’X in the Lie 
algebra such that [D, A] = A. Conversely, if there exists such a D the elements of the 
one-parameter subgroup generated by D are self-conjugations of exp( rA). 

In order to see the structure here more clearly, let % denote the set of the elements 
of a = class. The set R* of non-zero real numbers acts naturally on % as given by 
A : B + AB. Each orbit is simply a ‘line’ (without the point 0) in % and the orbit space 
is to be denoted by 0. Then % has a natural bundle structure of base 0 and fibre R*. 
We could now consider an action of R*@G in % given as follows: ( A ,  g ) :  B +  AAd,B. 
This action is transitive because of the factor R*. The subgroup G (as identified with 
10G) acts on %, and there are two possibilities: 

(i)  This action is transitive. Then the subgroup {exp( tA)} for A E C has non-trivial 
self-conjugations; % is homeomorphic to some homogeneous space for G. 

(ii) This action is not transitive. Then we do not have any non-trivial self-conjuga- 
tion of {exp(tA)} and we can consider an action of G on 0 by projection. This last 
action will always be transitive. Here 0 is an homogeneous space for G. 

In the first case, % itself is homeomorphic to G/S,  where S is the subgroup of G 
such that s E S if Ad,A = A for any A in the class 5%’; in the second 0 is homeomorphic 
to G/S, where now s E S if Ad,A = AA, A ER*. 

For the Lie algebras of Cayley-Klein geometries and others of low dimension this 
situation can easily be depicted and gives most of the homogeneous spaces for these 
groups. 

The preceding discussion can be summarised as follows. There are two essentially 
different situations. For classes % where there are no non-trivial self-conjugations, a 
good intrinsic transport of units can be defined by means of the - relation. Two 
generators have the same ‘measure’ iff they are on the same - class. This class will 
be called of the first kind. For the other classes, to be called the second-kind classes, 
the transport of A as a unit to other conjugated subgroups depends on the choice of 
a section of the bundle % +  0. Notice however that the quotient of the measures of 
two elements in the same subgroup, which are the significant values, does not depend 
on this section. This section will be referred to as a transport of units. 

A transport of units having been selected whenever necessary, we denote by A = B, 
the equivalence relation given by ‘B is obtained from A by the transport of units’. By 
this method we can obtain a unit system for G (i.e. for all of its one-parameter 
subgroups). Its ingredients are: 

(i)  A set of elements A,, one for each = class, a being a class index. 
(ii) For each of the second-kind classes, a concrete selection of the conjugation 

carrying exp( tA) onto every one-dimensional conjugated subgroup (a  section in the 
corresponding bundle % + 0). 

From now on, we shall consider the ‘measure’ of the elements X in the Lie algebra 
in the following way. In the subgroup exp(tX) there is a unique unit, which can be 
obtained by means of the transport from the unit A,(,, initially selected in the = class 
a (X)  of X. Then there is a well determined non-zero real number K such that 
X = KA,(,). The number K will be taken as the measure of X relative to the given 
unit system. 

Now we turn our attention to point ( b )  in order to analyse if there are some ‘special’ 
changes of the unit systems. According to the viewpoint developed above, a change 
in a unit system consists of both a change in each primitive unit A, and a change of 
the chosen transport whenever necessary. In this paper we shall only consider the 
change of the primitive units, but we leave unchanged the transport because the correct 
interpretation of the change of this transport is not yet fully clear to us. 
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Let us choose a basis of the Lie algebra %, {X,}, i = 1, .  . . , m. Relative to this basis 
(whose choice is generally a matter of convenience for the problem at hand) we could 
classify the classes into two subsets: 

(i)  those of the m elements XI as well as those of the non-null Lie brackets [XI, X,] 
(we shall call them basic classes (with respect to {XI}); and 

(ii)  all the other classes. 
A natural definition of adaptation or suitability for the basis is the following: 'when 

two elements XI and X, are in the same class, then XI = X,'. From any arbitrary basis 
a new adapted basis can always be obtained by means of simple scale changes in some 
of the X,. Such a basis will be called adapted to the unit system. 

For every non-zero Lie bracket [X,, X,] we have a non-zero real number K~ such that 

EX,, 4 1  = K , A u ( [ X , , X , l )  

where of course A,,,x,,x,l, is the pjimitive unit in the class of [XI, X,]. We now consider 
the change of units given by A,  + Ab = A ( a ) A , ,  with a non-zero real number A ( a )  for. 
each class (but keeping fixed the same transport), and the corresponding change of 
the (adapted) basis XI + Xi = A(a(X,))X,. If we define a new set of numbers K; by 
means of the corresponding relation it is an easy matter to check that the K~ and K ;  

are related by the following equation 

(3.1) 

Among all the primitive unit system changes, we pick out the so-called natural 
ones. By definition, a natural change of units is a change of units for which the linear 
transformation of the algebra given by 

X,+X:=A(a(X,))X, (3.2) 

is an automorphism. 
The restriction of being an automorphism of the Lie algebra can be important. In 

fact, only if X is Ad-nilpotent may there be an automorphism c $ ~  of % such that 
4 A ( X )  = AX for any A E R. This property is based on the following lemma. 

Lemma. A linear automorphism 4 of the vector space of % is an automorphism of '3 
if and only if A d 4 ( X )  = +oAdXo+-', VX E '3. 

Proof: Let Y be an arbitrary element of 3 and Z = 4( Y ) .  Then, if we take into account 
that A d 4 ( X ) Z  = [4(X),  4 (  Y ) ]  and 4oAdXo4- ' (Z)  = 4([X, Y ] )  we obtain the result 
of the lemma. 

Proposition. If for any A E R  there is an automorphism 4A of the Lie algebra % such 
that 4A (X) = AX, then X is Ad-nilpotent. 

Proof: If there is such an automorphism then AAdX = 4 A o A d X o 4 i '  according to the 
result of the lemma and therefore AdX and AAdX have to have the same invariant 
factors which is only possible if AdX is nilpotent. 

The meaning of the natural changes is clearly seen in the familiar case of Euclidean 
geometry. The standard basis J,  P, ,  Pz is adapted, and a unit system is given by, say, 
J and P , .  From the general change J + aJ, PI + AP, the automorphsim condition 
implies that a = 1. This corresponds to a well known property of that geometry: the 
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(numerical) relations in a given situation do not change explicitly when the unit of 
length is changed, but do change in an explicit way if the angular unit is changed. In 
general, the numerical relations concerned in a given problem will remain exactly 
identical for two unit systems related by a natural change. The case of the plane 
hyperbolic geometry is very interesting, because there are no natural changes. If one 
insists in performing a change of, say, the unit of length, the numerical relations will 
use explicitly a constant whose value depends on the unit of length chosen. It is 
perhaps worth remembering that this peculiar fact hindered the acceptance of absolute 
geometry in its early days (Bonola 1955, p 89). 

For a natural change of units, the scale factors A ( a )  of the basic classes are related 
by means of the equations A ( a ( X , ) ) A ( a ( X , ) )  = A ( a [ X i ,  X,])  whenever [ X , ,  X j ] # O .  
These relations can also be stated by saying that natural changes leave the values K~ 

unchanged. 
Given a basis X ,  in the Lie algebra 3, the set of all the natural changes has a group 

structure, isomorphic to (Rt)" for some natural number n. This is easily seen in the 
following way. Let us consider a real linear space V, = Rp whose dimension p coincides 
with the number of basic classes. For each possible change of units given by factors 
A ( a ) ,  let us consider the real numbers LnA(a) as components of a vector in the 
canonical basis of Rp. Then the set of the equations for natural changes becomes a 
set of linear equations for the numbers L n A ( a ) ,  which determines a subspace N ,  of 
dimension n S p ,  of V, =Rp.  If a basis {e,}, a = 1,2 , .  , . , n, is chosen in N,, then every 
element in N ,  can be given by a linear combination of e,, and hence 

n 

L n ( A ( a ) )  = C ( L n y " ) 8 , ,  
a = l  

where e,,, denote the components of 8, in the canonical basis of Rp and the coefficients 
in the linear combination have been written as Lny". Then 

and therefore the numbers y' can be considered as the parameters of a natural change, 
relative to the basis ea, and the real numbers B , ,  play the role of dimensional coefficients 
of the class a in the basis {O,} .  

Notice the resemblance of the relations we have obtained to the conventional ones 
in DA ( H u h  1981) that in the case we have discussed have a group theoretical support. 
In particular, it is now clear that the term 'dimension of X,' is meaningless; the correct 
way is to speak of the 'dimensions (or dimensional coefficients) of X I  with respect to 
the basis 8,'. Nevertheless, if a basis 8, has been chosen we could simplify matters 
by speaking of the 'dimension' of X ,  (i.e. one set of dimensional coefficients). 

Under natural changes, the numbers K,, (which are tantamount to structure constants 
and are exactly structure constants in some particular cases) do nor change their values. 
We could even say that the K,, are dimensionless under natural changes. The actual 
numerical value of K,, can appear in a formula or relation, but this value being invariant 
under natural changes, the same formula or relation will result after a natural change 
has been performed. In the particular case where the K,, are the structure constants, 
the natural changes are actually those determined by the 'dimensionalisation 
hypothesis' of our earlier paper. This fact explains the success of this hypothesis in 
the case of kinematic groups in the 'physical' basis (Cariiiena er al 1981). 
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Let us suppose that we do consider a non-natural unit change. The numbers K,, 

do not yet behave as dimensionless and change with a factor as indicated previously. 
If we want to maintain in this case the language used for natural changes, we can say 
that each K,, has acquired a ‘dimension’ which governs its scale change factor under 
the changes considered. In this case any relation will make the values of the K,, appear 
explicitly, but of course the rule of change of the K,, ensures that no result is affected 
by these ‘spurious’ constants, because their explicit values are only a device for dealing 
with non-natural changes. The mere existence of the K,, is the relevant point, and has 
been duly taken into account by the structure of natural changes. 

A particular instance where the preceding situation appears is in the case of group 
contractions. In fact, the analytical description of an IW contraction of groups corre- 
sponding in geometrical terms to the ‘restriction’ to the neighbourhood of a point, a 
line, etc, requires a non-natural unit change as a way of introducing a ‘constant’ in 
terms of whose value a limit +03 or -0 could be considered. The actual meaning of 
such a ‘variation of constants’ has been clearly discussed by LCvy-Leblond (1977). 
The case c+03 in the transition to the Galilei group from the PoincarC group is 
prototypical, and LCvy-Leblond points out the fact that a second ‘limit’ c+co could 
be obtained, the Carroll group (LCvy-Leblond 1965). In this case the difficulty is 
mainly academic, but for other situations not so well understood, the problem of 
deciding how to insert the constants which have to go to zero or infinity is not trivial 
and as the preceding example shows, two completely different limits can be obtained. 
To the examples we have given in our previous paper we could add those relevant to 
the search for an ‘ultrarelativistic limit’ of the PoincarC group. The DA we have 
developed provides a well defined framework where all the questions concerning such 
problems could be unambiguously answered. 

We have also noticed that we have determined natural changes only after a basis 
had been chosen. This is related to the fact that nothing has been said about the effect 
of natural changes on the non-basic classes. This is not unsatisfactory because any 
element in the group can be expressed as a product of elements in the subgroups 
generated by X,, and once units have been chosen for the basic classes we can, in 
principle, avoid completely the explicit mention of units in these non-basic classes, 
which amounts to a (conventional) choice for the units of non-basic classes in terms 
of those chosen for the basic classes. We hope to discuss this point as the problem 
of the role of the ‘transport’ in a future paper. 

4. Examples 

In this section we discuss with some examples how to apply the theory developed in 
§ 3 .  We will make use of the groups of the two-dimensional Cayley-Klein geometries 
as well as the group introduced in § 2.  

For the case of the Euclidean plane group E(2) there are just two = classes, the 
first one being built up by the linear combinations of A and B, both of the first kind. 
So, using the notation of table 1, a unit system is given by { A ,  C}. The natural changes 
are given by A + AA, C -* C and for them B + AB. So the group of natural changes is 
R+ and we find the conventional result: only one ‘dimensional’ magnitude. When 
understood in terms of the Euclidean geometry this magnitude is the parameter of 
translations and special transformations, i.e. length, while when understood in terms 
of the non-Euclidean geometry, natural changes correspond to changes in the measure- 
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ment of angles and the parameter of special transformations, but lengths along lines 
remain unchanged. This is clear if one thinks in terms of duality. 

The SO(3) group is almost trivial from this viewpoint. There is only one = class, 
of the first kind, and there are no natural changes. Hence, all the generators are 
‘dimensionless’. This, of course, corresponds to the known facts in spherical geometry. 

The group SO(2, 1) is a bit more interesting: in the basis given in table 1, there are 
three classes, with representatives C, A and K = C - B, respectively. The classes of C 
and A are of the first kind, but that of K is of the second kind (as we pointed out 
before [A, K ] =  K ) .  Let us first consider the basis A, B, C. It is easy to see that the 
basic classes are those of C and A. There are no natural changes relative to this basis. 
The meaning of this result is clearly stated with reference to the hyperbolic geometry 
because the constant curvature of the space allows and imposes a definite relation 
between lengths and angles (by means of the parallelism angle). If a non-natural 
change in the unit of length is performed (i.e. A + AA), then the structure constant 
K A B  will acquire a (spurious) dimension [ A ] - 2 .  From a Euclidean viewpoint, we could 
say that in the hyperbolic plan there is a ‘universal constant’, whose ‘Euclidean 
dimension’ is the square of a length, appearing explicitly in the formulae. The actual 
meaning of this spurious dimension is that even if in the local contraction hyperbolic 
geometry goes into Euclidean geometry, and consequently the structure constant KAB 

goes to zero, before taking the limit (i.e. for small enough neighbourhoods of a given 
point), whereas the metrical (i.e. angles and distances) relationships are up to first 
order identical to those in the limit theory, there remain some second-order discrepan- 
cies or anomalies due to curvature as measured, for example, by the Diquet or 
Bertrand-Puiseux formula (Spivak 1979), and these discrepancies have, in the limit 
theory, a natural dimension of square length. A mme interesting example is that of 
the group %. 

The study of the geometry of the points at infinity in the hyperbolic plane from 
this viewpoint is also enlightening. If we simply translate the results obtained for the 
former case, C and A are, naturally enough, dimensionless. By the convention we 
have used, K can also be taken as dimensionless and so for all the generators. 

As an application of the theory developed in 9 3, the basic classes for the case of 
the conformal group in one dimension are those of { D }  and { T, K }  and the last is of 
the second kind. As a unit system we can choose D and T, and suppose that a transport 
is chosen in such a way that the basis is adapted, so that T = K .  (This is possible if 
the transport is chosen as being exp[a( T +  K ) ] ,  i.e. not in the homogeneous subgroup, 
but not if we are restricted to the homogeneous subgroup as we will comment on later.) 
Then, we obtain immediately that there are no natural changes. 

The same result can be obtained by taking another basis. In fact, any conformal 
transformation can also be decomposed as a product of elements in the one-parameter 
subgroups (it is called the Iwasawa decomposition of SL(2,R) (see, for example, 
Wawrzynczyk 1984)) 

t + tan $6 1 
t -+  t + e-‘‘ I + -  

1 - tan $6 1-at  
(4.1) 

generated, respectively, by R f, C, D- A and K * C - B, with commutation relations 

[D,  RI = K - R [D,  K ] =  K [R,  K ] = D .  (4.2) 
Now the basic classes are three classes, those of {D,  K - R } ,  { R }  and { K } ,  the last 

being of the second kind. We choose D, R, K as a unit system, and for the application 
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of the theory, the transport for the class of K is not strictly necessary because the 
basis is adapted no matter what the transport. The theory in $ 3  leads to the non- 
existence of natural changes, in agreement with our previous results. 

However, by proceeding in a naive way, and starting with the expressions for the 
group action, we will obtain diflerent results. If we start with the relations (2.1) it is 
natural to give dimensions, say [ t ] ,  to the unique variable t ;  then one is led to assign 
dimension [ t ]  to the parameter b, [ t ] - ’  to a and A is dimensionless; so, the generators 
have dimensions, say, [TI = L-’,  [ K ]  = L, [ D ]  = 1. When looked upon from the view- 
point of the associated hyperbolic geometry [ D ]  = 1 means that translations are 
dimensionless, as expected, but the relations [ TI = L-’ ,  [ K ]  = L assign diferent 
(although perhaps spurious) dimensions to two conjugated generators. 

Had we started with the relations (4.1), the same reasoning would lead to [?I= 1 
and then all the parameters are dimensionless. So this naive treatment does not give 
an unambiguous prescription for the dimensionalisation. 

The same results are obtained by working through with our old dimensionalisation 
hypothesis (Caririena et a1 1981). In fact, in the commutation relations we shall assign 
an unrelated symbol to each generator, demanding that the structure constants be 
dimensionless, and we shall obtain 

[D]=1 [ T I [ K l =  1 

in the basis (2.1). Instead of this we would find 

[ D ] =  1 [ K I  = [ R I  [ R I [ K l =  1 so that [RI  = [ K ]  = 1 

when using the basis (4.1). 
The origin of the (spurious) dimensions appearing in the first case is linked with 

the fact that one cannot compare H and K unless a transport has been selected. If 
this transport is not given, then it is not completely unreasonable to consider [TI  and 
[ K ]  as a priori unrelated, and this leads to the dimension [TI = [ I C ] - ’ .  From another 
viewpoint, instead of the formula eip + t =tan fP, we can also take eip + t = A tan $ 
with A any non-zero real constant and then the (apparent) dimension of t is only a 
device for a (bad) parametrisation by R of a set homeomorphic to SI (which does not 
admit ‘dilatations’) after removing a point (i.e. at the price of introducing a point in 
which the parametrisation is not regular). 

There are other two-dimensional Cayley-Klein geometries, those associated with 
the groups %(2) and d ( 2 ) .  They are left to the reader. Notice only that the case of 
Minkowskian geometry has some second-kind classes, and hence has similar features 
to those previously discussed. These features will also appear in our next example. 

As a final example we deal with the ultrarelativistic contraction of the PoincarC 
group proposed in § 2. We first consider the PoincarC group. In the null-plane basis, 
the basic classes are those of {JJ, { K 3 } ,  {El, E2, F,, F2}{P+, P-} and { P I ,  P2}. The 
second-kind classes are those of {El, E2, F,, F2} and {Pl, P2}. 

A unit system is given by J3, K3 ,  E , ,  P,, P1 and the choice of transports. The 
natural changes are those given by 

J3 + J3 K3 + K3 El + El P+ + AP+ P1 + APl. 

Then in the PoincarC group we recover the usual statement. 
We only have one ‘dimension’ symbolised by IL, common to P+, P-, Pi, and all the 

other basic elements are dimensionless. (Notice that the only use of the old dimension- 
alisation hypothesis leads to different results.) 
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We are now going to study the group contraction %. Here the structure of the 
classes is richer, and the basic classes are those of { J 3 } ,  { K 3 } ,  { E l ,  E 2 } ,  {Fl, F2},  {P+}, 
{P-}.  Then a unit system is given by J3,  K,, E l ,  F,, P+, P-, PI and the natural changes 
are those given by 

J3 + J3 K3 + K3 E ,  .+ rE, F, + sF, P+ + tP+ 

P- + UP- PI .+ VP, 

where the positive real numbers r, S ,  t ,  U, U fulfil the relations 

s t / v  = 1 m / v  = 1. 

Then we have five ‘dimensions’, those of the classes { E , } ,  {F , } ,  {P+}, {P-} ,  {P,} ,  
respectively symbolised by H-’, G-’, C-I, D-’, L-I, linked by the two relations 
G = LC-I, H = LD-I. So we can take L, C, D as ‘primitive dimensions’ corresponding 
to the ‘basis’ automorphisms whose factors A (a) = ( r ,  s, t ,  U, v )  are respectively 
( A ,  A, 1, 1, A), (1, l/a, U, 1, 1) and ( l /p,  1, 1, p, 1). The most general natural change is 
the general product ( A / p ,  A/p, a, p, A ) .  

Then the ‘decoupling’ of space and time which is characteristic of the transition 
from 9 to its Galilean limit occurs here between the ‘transverse space’, whose transla- 
tions are generated by PI, and the two ‘directions’ P+ and P-. This could be expected 
because in the contraction from B and OU two Galilei (2+ 1) subalgebras appear, the 
role of time translations and pure inertial transformations being taken by P-, - E ,  and 
P,, --E, respectively. The dimensional structure obtained can be considered as a 
natural consequence of the preceding remark and the two ‘directions’ P+, P- could 
be imagined as some kind of ‘time direction’. 

Now let us use the theory in order to see the correct way of implementing the 
rescaling of variables that gives rise to the contracted group through a numerical limit. 
Notice that the Lie brackets going to zero are [P,, E,],  [F,, E,]  and [PI ,  Fr].  The 
corresponding coefficients K,, are dimensionless for natural changes. The main point 
is now that if one performs not an arbitrary non-natural change in 9 but precisely a 
non-natural change in % which in the limit is a natural change in the contracted group 
021, these coefficients acquire a (spurious) dimensionality. We will denote this spurious 
dimension in 9 by the same symbol as in the group %. Thus it is easy to see that the 
(spurious) dimension of the relevant (i.e. going to zero) coefficients is always L’C-ID-’ 
which would be the dimension of the corresponding K,, in the contracted group, where 
it is not equal to zero. The same discussion can be carried out for the more elementary 
case of the contraction from the hyperbolic to the Euclidean geometry. In the strict 
viewpoint of Euclidean geometry there is no ‘absolute’ way of measuring lengths but 
if we suppose that the exactly true geometry is not Euclidean but hyperbolic, and we 
continue with our Euclidean habits of changing the unit of length, we will describe 
the curvature of space by means of some magnitude K of dimension LP2. This is, of 
course, a spurious dimension from the viewpoint of hyperbolic geometry and the 
description of this situation by means of the Euclidean geometry is more and more 
precise, the more the magnitudes appearing with (Euclidean) dimension L2 are negli- 
gible in front of K. 

This discussion can be translated to our case by comparing the dimensions of the 
generators in 9 and % and we see that one can identify il with L, and then one needs 
two constants, K and 8, with (spurious in 9) dimensions LD-’ and LC-I in order to 
pass from 9 to 021. The values of K and 8 depend on the unit system we have chosen 
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in 9 but under natural changes (in 9) these values do not change, and hence the 
criterion of validity of the application of the group % to a given situation is as follows. 
All the magnitudes, that under non-natural changes in 9 of the kind (3.2) have 
dimension L2D-’C-’ ,  ought to be negligible with regard to the product K O .  

Then K and 6 play the role of ‘hidden universal constants’ in the sense of Levy- 
Leblond (1977) .  We can even use a particular unit system in which their values will 
be 1 (i.e. measure, for example space translations and light-like translations, all in 
metres). In any case, the contraction B -+ % will be described as the ‘limit’ whose 
exact meaning was explained before. 

We give the explicit form of the commutation relations for the PoincarC group 
generators after a non-natural change of the type (3.2) has been performed. The factors 
( I ,  s, t, U, U )  of such a change are ( l / ~ ,  l / e ,  6, K ,  1 )  and then the only commutators 
where K and O appear explicitly are 

which in the ‘limit’ K 6 - O  give rise to the contracted group ”U. The fact that the 
contraction can be reached alternatively with K +a, O = ct and K = ct, 6 +cc corre- 
sponds to some duality between the sets { E ,  P,} and {F,, P-} in the PoincarC group, 
and is probably somewhat linked with the duality for the electromagnetic field in the 
absence of charges and currents. The Inonu- Wigner contraction with factors 
( 1 ,  E ,  1, E ,  E )  is a product of an automorphism (i.e. a natural change) characterised by 
( 1 ,  1 ,  E,  E ,  E )  times a non-natural change with 6 = 1 / ~ ,  and K = 1 ,  ( 1 ,  E ,  1 / ~ ,  1 ,  1 ) .  The 
group OU could also be obtained as the limit E + 0 of 

F, + EF, p+ -+ ( 1 / E )  P, 

just in the same way as the Galilei group could also be obtained in the limit E -+ 0 of 
K + EK, H + ( ~ / E ) H  instead of the geometrically clear contraction K + EK, P +  EP. 

Using the results obtained we easily see the rescaling of parameters in the group 
9 needed to safely reach % through a ‘limit’ K O  + 0. These are given in our table below. 

Parameters Dimension Dimension Parameters 
Generators in 9’ in ? in % Scaling in % 

6 J3 4 1 1 
P K ,  P 1 1 

F I 1 Lc-’ I=  w j %  W 

il C p = %m m 
U L D V = K n  

Pi P 
P- n 
P il L - a a 

- 
- 

E & 1 L D - I  & = U / K  0 

Then from the action of 9 on spacetime, by means of rescaling and limiting, the group 
%! appears as a transformation group of a four-dimensional ‘light-like’ spacetime, 
homeomorphic to R4 and naturally parametrised by four coordinates ( r ,  s, x), as follows: 
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which of course coincides with the action of 4!l on its homogeneous space %/N of % 
by the homogeneous subgroup N. A study of the group 41 is now under development. 
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